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Abstract This paper is concerned with synchroniza-
tion in a setting time for drive-response chaotic systems
with multiple time-varying delays. The driving and
response systems exhibit different dynamical behav-
iors with nonidentical delays and uncertain bounded
external perturbations. Due to the time delays, exist-
ing finite-time stability theorem cannot be applied to
the synchronization goal. By designing suitable con-
troller and designing someLyapunov–Krasovskii func-
tionals, sufficient conditions guaranteeing the finite-
time synchronization are derived without using exist-
ing finite-time stability theorem. Results of this paper
extend most of existing ones which can only finite-
timely synchronize coupled identical systems without
delay. Numerical simulations demonstrate the effec-
tiveness of the theoretical analysis.
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1 Introduction

In the past decades, synchronization and control have
been extensively studied due to the pioneering work
of Pecora and Carroll in [1]. It is reported that syn-
chronization has important applications in science and
engineering such as secure communication, biologi-
cal, and chemical reaction [2,3]. In the literature, there
are many results concerning asymptotic synchroniza-
tion [4–9]. Asymptotic synchronization means that the
synchronization can only be realized as time goes to
infinity. From practical point of view, one may expect
that the synchronization is realized as fast as possi-
ble. In recent years, much efforts have been devoted to
fast synchronization. An effective method for fast syn-
chronization is to use finite-time technique. Moreover,
finite-time technique has better robust and perturbation
rejection ability than asymptotic technique [10]. There-
fore, finite-time synchronization has attracted increas-
ing attention in recent years.

Finite-time synchronization means that synchro-
nization can be achieved in a setting time. In the lit-
erature, there are many results on finite-time synchro-
nization. The authors in [11–14] considered finite-time
synchronization of multi-agent systems. Finite-time
synchronization of several classes of coupled chaotic
systems was studied in [15–18]. However, most of
existing finite-time synchronization results did not con-
sider time delay. Time delays are an important internal
factor of nonlinear systems and have heavy effect on
the dynamics of nonlinear systems. For example, the
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quiescent state of neural networks can be transited to
spiking, bursting, and chaotic state when there is time
delay in the autapses [19,20]. It should be noted that
most of existing results on synchronization in finite
time are obtained by using the finite-time stability the-
orem in [21] or similar theorem in [22]. Unfortunately,
it was reported in [23] that the finite-time stability the-
orems in [21] and [22] cannot be employed to study
finite-time stability and synchronization of time-delay
systems. Considering that time delay is unavoidable
in practice, the authors in [24] considered finite-time
issue for a special linear system with constant time
delay. But the results in [24] are not usable in prac-
tice since it is extremely difficult to find a Lyapunov
function satisfying the assumptions in [24]. Recently,
Yang proposed a new control and analytical technique
to study finite-time synchronization of neural networks
with time delays in [25], but the driving and response
systems are identical. Moreover, Yang did not consider
external perturbations. A natural question is: whether
the synchronization can still be realized in finite time
when the driving and response systems are nonidentical
with different uncertain external perturbations and time
delays? As far as the authors’ knowledge, finite-time
synchronization of nonidentical chaotic systems with
different uncertain external perturbations and delays
has not been considered in the literature.

It is not always practical to assume that coupled
systems are identical [26]. In [26] and [27], asymp-
totic synchronization of complex dynamical networks
with nonidentical nodes has been studied. In [28] and
[29], cluster synchronization in networks of coupled
nonidentical dynamical systems has been investigated.
In [30], partial synchronization of nonidentical chaotic
systems via adaptive control. In [31] and [32], syn-
chronization of nonidentical chaotic systemswith time-
varying delay was studied by impulsive control. Note
that only asymptotic synchronization canbeguaranteed
in [26–32] for coupled nonidentical chaotic systems.
Recently, by using the finite-time stability theorem in
[22], the authors in [10] studied finite-time synchro-
nization for a class of coupled nonidentical chaotic sys-
tems without delay. However, by the comments in [23],
results in [10] cannot be directly extended to finite-
time synchronization of nonidentical systemswith time
delays. This paper aims to solve this challenging prob-
lem.

External disturbances should also be considered in
studying synchronization [33]. There are many papers

in the literature concerning stability and synchroniza-
tion of dynamical systems with bounded external per-
turbations, and at the same time, some effective con-
trol schemes have been proposed, such as robust con-
trol [34], H∞ control [35], and sliding mode control
[36]. However, to the best of our knowledge, most of
published papers concerning synchronization of cou-
pled systems with nonidentical perturbations can only
drive the synchronization errors to some bounded areas
around the origin. It iswell known that one of the impor-
tant applications of synchronization is secure commu-
nication, and the transmitted signals can only be recov-
ered when the synchronization error has been driven to
zero. Thus, it is of great importance to study finite-time
synchronization of coupled systems with nonidentical
external perturbations.

Based on the above discussions, this paper inves-
tigates the finite-time synchronization of nonidentical
drive-response systems with different multiple time-
varying delays and bounded external perturbations
without using the finite-time stability theorem in [21].
A simple nonlinear controller is designed. By utilizing
suitable Lyapunov–Krasovskii’s functionals and some
useful inequality techniques, several sufficient condi-
tions are obtained to finite-timely synchronize the inter-
est system.Moreover, the setting time for synchroniza-
tion is also estimated. Numerical examples are given
to show the effectiveness of our results.

The rest of this paper is organized as follows. In
Sect. 2, models with uncertain external perturbations
and multiple time-varying delays are presented, and
some necessary definitions and assumptions are given.
In Sect. 3, finite-time synchronization for the presented
model is studied. In Sect. 4, several numerical simula-
tions are given to demonstrate the effectiveness of the
theoretical results. Sect. 5 comes to conclusion.

Notations: In this paper, the notations are quite stan-
dard. Rn denotes the n-dimensional Euclidean space.
A = (ai j )n×n denotes a matrix of n × n real matri-
ces. The superscript T denotes matrix or vector trans-
position. For a vector x = (x1, x2, . . . , xn)T ∈ Rn ,
if |xi |, i = 1, 2, . . . , n is bounded, then we say x
is bounded. Let τ > 0 and C([−τ, 0]; Rn) denote
the family of continuous functions ω for [−τ, 0] to
Rn with the uniform norm ‖ω‖ = sup−τ≤κ≤0 |ω(κ)|.
Sometimes, the arguments of a function or a matrix
will be omitted in the analysis when no confusion can
arise.
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2 Preliminaries

Consider a general nonlinear system with multiple
time-varying delays and bounded external perturba-
tions as follows:

ẋ(t) = Ax(t) + f (x(t), x(t − τ1(t)), . . . , x(t

−τm(t))) + J (t, x(t)), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n is the

state of the system, f (x(t), x(t − τ1(t)), . . . , x(t −
τm(t))) = ( f1(x(t), x(t − τ1(t)), . . . , x(t − τm(t))),
f2(x(t), x(t − τ1(t)), . . . , x(t − τm(t))), . . . , fn(x(t),
x(t − τ1(t)), . . . , x(t − τm(t))))T , J (t, x(t))
= (J1(t, x(t)), J2(t, x(t)), . . . , Jn(t, x(t)))T ∈ R

n is
external perturbation, τ1(t), τ2(t), . . . , τm(t) are the
internal multiple time-varying delays.

Consider (1) as the driving system, the response sys-
tem is presented as follows:

ẏ(t) = Ãy(t) + f̃ (y(t), y(t − τ̃1(t)), . . . , y(t

−τ̃l(t))) + J̃ (t, y(t)) +U (t), (2)

where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ R
n is the

state of the response system, f̃ (y(t), y(t−τ̃1(t)), . . . ,
y(t − τ̃l(t)))=( f̃1(y(t), y(t−τ̃1(t)), . . . , y(t−τ̃l(t))),
f̃2(y(t), y(t − τ̃1(t)), . . . , y(t − τ̃l(t))), . . . , f̃n(y(t),
y(t − τ̃1(t)), . . . , y(t − τ̃l(t))))T , J̃ (t, y(t))
= ( J̃1(t, y(t)), J̃2(t, y(t)), . . . , J̃n(t, y(t)))T ∈ R

n

is external perturbation, τ̃1(t), τ̃2(t), . . . , τ̃l(t) are the
internal multiple time-varying delays, and U (t) =
(u1(t), u2(t), . . . , un(t))T is the controller to be
designed.

The initial conditions of systems (1) and (2) are
x(s) = ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s))T

∈ C([−τ, 0],Rn) and y(s) = φ(s) = (φ1(s), φ2(s),
. . . , φn(s))T ∈ C([−τ, 0],Rn), respectively, where
τ = max{τ1(t), τ2(t), . . . , τm(t), τ̃1(t), τ̃2(t), . . . ,
τ̃l(t)}, C([−τ, 0],Rn) denote the set of continuous
vector-valued functions from [−τ, 0] to Rn .

Let e(t) = y(t)−x(t) = (e1(t), e2(t), . . . , en(t))T ,
f̃ (x(t), x(t − τ̃1(t)), . . . , x(t − τ̃l(t))) = f̃ x (t) =
( f̃ x1 (t), . . . , f̃ xn (t))T , f̃ (y(t), y(t − τ̃1(t)), . . . , y(t −
τ̃l(t))) = f̃ y(t) = ( f̃ y1 (t), . . . , f̃ yn (t))T , f (x(t),
x(t−τ1(t)), . . . , x(t−τm(t)))= f x (t)=( f x1 (t), . . . ,
f xn (t))T , f (y(t), y(t − τ1(t)), . . . , y(t − τm(t))) =
f y(t) = ( f y1 (t), . . . , f yn (t))T . The following error
system can be obtained from (1) and (2).

ė(t) = Ãe(t) + g̃(e(t), e(t − τ̃1(t)), . . . , e(t−τ̃l(t)))

+ Ãx(t) + f̃ (x(t), x(t − τ̃1(t)), . . . , x(t

− τ̃l(t))) + J̃ (t, y(t)) − Ax(t)

− f (x(t), x(t − τ1(t)), . . . , x(t − τm(t)))

− J (t, x(t)) +U (t), (3)

or

ė(t) = Ae(t) + g(e(t), e(t−τ1(t)), . . . , e(t−τm(t)))

+ Ãy(t) + f̃ (y(t), y(t − τ̃1(t)), . . . , y(t

− τ̃l(t))) + J̃ (t, y(t)) − Ay(t)

− f (y(t), y(t − τ1(t)), . . . , y(t − τm(t)))

− J (t, x(t)) +U (t), (4)

where g(e(t), e(t − τ1(t)), . . . , e(t − τm(t))) = (g1
(e(t), e(t−τ1(t)), . . . , e(t−τm(t))), . . . , gn(e(t), e(t−
τ1(t)), . . . , e(t − τm(t))))T = f y(t) − f x (t), g̃(e(t),
e(t − τ̃1(t)), . . . , e(t − τ̃l(t))) = (g̃1(e(t), e(t −
τ̃1(t)), . . . , e(t−τ̃l(t))), . . . , g̃n(e(t), e(t−τ̃1(t)), . . . ,
e(t − τ̃l(t))))T = f̃ y(t) − f̃ x (t).

The initial condition of (3) and (4) is e(s) = φ(s)−
ϕ(s) ∈ C([−τ, 0],Rn).

In this paper, the following assumptions are needed.
(H1)There exist positive constants τ , τ̃ ,μ < 1, μ̃ <

1 such that 0 < τh(t) ≤ τ , 0 < τ̃h̄(t) ≤ τ̃ , τ̇h(t) ≤ μ,
˙̃τh̄(t) ≤ μ̃, h̄ = 1, 2, . . . , l, h = 1, 2, . . . ,m.

(H2) There exist positive constants ki j , i, j =
1, . . . , n such that

| f yi (t) − f xi (t)| ≤
n∑

j=1

ki j
[|y j (t) − x j (t)|

+
m∑

h=1

|y j (t − τh(t)) − x j (t − τh(t))|
]

.

(H3) There are positive constants k̃i j , i, j =
1, . . . , n such that

| f̃ yi (t) − f̃ xi (t)| ≤
n∑

j=1

k̃i j
[|y j (t) − x j (t)|

+
l∑

h=1

|y j (t − τ̃h(t)) − x j (t − τ̃h(t))|
]

.

(H4) There are positive constants Mi , M̃i , Hi , Li

such that | f xi (t)|, | f yi (t)| ≤ Mi , | f̃ xi (t)|, | f̃ yi (t)| ≤
M̃i , |xi (t)| ≤ Hi , |yi (t)| ≤ Li , i = 1, 2, . . . , n.

(H5) There exist constants Qi and Q̃i , such that
|Ji (t, x(t))| ≤ Qi , | J̃i (t, y(t))| ≤ Q̃i , i = 1, 2, . . . , n.
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Remark 1 Conditions (H2) and (H3) are general,
which contain almost all the well-known chaotic sys-
tems with or without delays such as Lur’e system,
Lorenz system, Rässler system, Chen system, delayed
Chua’a circuit, and neural network [10]. All these
systems mentioned above can be described as ẋ =
f (t, x(t), x(t −τ(t))), and there are positive constants
ki j > 0, i, j = 1, 2, · · · , n such that

| fi (t, y(t), y(t − τ(t))) − fi (t, x(t), x(t − τ(t)))|

≤
n∑

j=1

ki j (|y j (t) − x j (t)| + |y j (t − τ(t))

− x j (t − τ(t))|) (5)

for any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n and

y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ R
n , where τ(t) is

time-varying delay. In this paper, the condition (5) is
extended to multiple time delays.

Remark 2 The conditions (H4) and (H5) are general.
It is well known that chaotic system has strange attrac-
tors, and there exists a bounded region containing all
attractors of it such that every orbit of the system never
leave them [32,33], which implies that the conditions
(H4) and (H5) are easily satisfied for general chaotic
systems.

Definition 1 The response system (2) is said to be
synchronized with driving system (1) in finite time,
if there exists a constant t1 > 0 (t1 depends on the
initial state value of error system and time delay) such
that ‖e(t1)‖1 = 0 and ‖e(t)‖1 ≡ 0 for t > t1, where
‖e(t)‖1 = ∑n

i=1 |ei (t)|, t1 is called the setting time.

3 Main results

In this section, by designing a suitable controller and
using similar analytical techniques proposed in [25],
several sufficient conditions are derived to guarantee
the synchronization in a setting time. Moreover, the
setting time is estimated theoretically.

Consider the following state feedback controller:

ui = −ξi ei (t) − δi sgn(ei (t)), i = 1, 2, . . . , n, (6)

where ξi , δi are positive constants to be determined, the
symbol sgn denotes the standard sign function.

The following theorem is our main result.

Theorem 1 Suppose that conditions (H1), (H3), (H4),
and (H5) hold and the control gains ξi and δi in (6)
satisfy the following inequalities:

ξi ≥
n∑

j=1

[
ãi j +

(
1 + 1

1 − μ̃
l

)
k̃ j i

]
, i = 1, 2, . . . , n,

(7)

δi >

n∑

j=1

|ãi j − ai j |Hi + Mi + Qi + M̃i + Q̃i ,

i = 1, 2, . . . , n. (8)

Then system (2) can be synchronized with (1) in a
setting time under controller (6). Moreover, the set-
ting time is estimated as t1 ≤ 1

ρ
(
∑n

i=1 |ei (0)| +
1

1−μ̃

∑n
i=1

∑n
j=1

∑l
h=1 k̃i j

∫ 0
−τ̃

|e j (s)|ds), where ρ =
min{ρi , i = 1, 2, . . . , n}, ρi = δi − (

∑n
j=1 |ãi j −

ai j |Hi + Mi + Qi + M̃i + Q̃i ).

Proof Define the following Lyapunov–Krasovskii
functional candidate:

V (t) = V1(t) + V2(t), (9)

where

V1(t) =
n∑

i=1

|ei (t)|,

V2(t) = 1

1 − μ̃

n∑

i=1

n∑

j=1

l∑

h=1

k̃i j

∫ t

t−τ̃h(t)
|e j (s)|ds.

Calculating the time derivative of V1(t) along the
trajectories of the error system (3), it can be found that

V̇1(t) =
n∑

i=1

sgn(ei (t))ėi (t)

=
n∑

i=1

sgn(ei (t))

⎡

⎣
n∑

j=1

ãi j ei (t)

+ g̃i (t) +
n∑

j=1

ãi j xi (t) + f̃ xi (t) + J̃i (t, y(t))

−
n∑

j=1

ai j xi (t) − f xi (t) − Ji (t, x(t))

− ξi ei (t) − δi sgn(ei (t))

⎤

⎦

=
n∑

i=1

⎧
⎨

⎩

⎛

⎝
n∑

j=1

ãi j − ξi

⎞

⎠ |ei (t)|
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+ sgn(ei (t))

⎡

⎣g̃i (t) +
n∑

j=1

(ãi j − ai j )xi (t)

+ f̃ xi (t) + J̃i (t, y(t)) − f xi (t)

− Ji (t, x(t))

⎤

⎦ − δi |sgn(ei (t))|
⎫
⎬

⎭ , (10)

where |sgn(ei (t))| = 1 when ei (t) �= 0, while
|sgn(ei (t))| = 0 when ei (t) = 0.

It follows from (H3) that

sgn(ei (t))g̃i (t) ≤ |g̃i (t)|

≤
n∑

j=1

k̃i j

⎡

⎣|y j (t) − x j (t)|

+
l∑

h=1

|y j (t − τ̃h(t)) − x j (t − τ̃h(t))|
⎤

⎦

=
n∑

j=1

k̃i j

[
|e j (t)| +

l∑

h=1

|e j (t − τ̃h(t))|
]

. (11)

One has from (H4) and (H5) that

sgn(ei (t))

⎡

⎣
n∑

j=1

(ãi j − ai j )xi (t)

+ f̃ xi (t) + J̃i (t, y(t)) − f xi (t) − Ji (t, x(t))

⎤

⎦

≤
⎡

⎣
n∑

j=1

|(ãi j − ai j )||xi (t)| + | f̃ xi (t)|

+ | J̃i (t, y(t))| + | f xi (t)|

+ |Ji (t, x(t))|
⎤

⎦ |sgn(ei (t))|

≤
⎡

⎣
n∑

j=1

|ãi j − ai j |Hi + Mi

+ Qi + M̃i + Q̃i

⎤

⎦ |sgn(ei (t))|. (12)

Substituting inequalities (11) and (12) into (10) derives
that

V1(t) ≤
n∑

i=1

⎧
⎨

⎩

⎛

⎝
n∑

j=1

ãi j − ξi

⎞

⎠ |ei (t)|

+
n∑

j=1

k̃i j

[
|e j (t)| +

l∑

h=1

|e j (t − τ̃h(t))|
]

+
⎡

⎣
n∑

j=1

|ãi j − ai j |Hi + Mi

+ Qi + M̃i + Q̃i − δi

⎤

⎦ |sgn(ei (t))|
⎫
⎬

⎭

=
n∑

i=1

⎡

⎣
n∑

j=1

(ãi j + k̃ j i ) − ξi

⎤

⎦ |ei (t)|

+
n∑

i=1

⎡

⎣
n∑

j=1

|ãi j − ai j |Hi + Mi + Qi

+ M̃i + Q̃i − δi

⎤

⎦ |sgn(ei (t))|

+
n∑

i=1

n∑

j=1

l∑

h=1

k̃i j |e j (t − τ̃h(t))|. (13)

It is obtained from V2(t) that

V̇2(t) = 1

1 − μ̃

n∑

i=1

n∑

j=1

k̃i j

⎡

⎣l|e j (t)|

−
l∑

h=1

(1 − ˙̃τh(t))|e j (t − τ̃h(t))|
⎤

⎦

=
n∑

i=1

n∑

j=1

k̃i j

⎡

⎣ 1

1 − μ̃
l|e j (t)|

−
l∑

h=1

1 − ˙̃τh(t)
1 − μ̃

|e j (t − τ̃h(t))|
⎤

⎦

≤ 1

1 − μ̃
l

n∑

i=1

n∑

j=1

k̃i j |e j (t)|

−
n∑

i=1

n∑

j=1

l∑

h=1

k̃i j |e j (t − τ̃h(t))|, (14)

where (H1) has been used.
By (13) and (14), one has

V̇ (t) = V̇1(t) + V̇2(t)

≤
n∑

i=1

⎡

⎣
n∑

j=1

(
ãi j+

(
1+ 1

1−μ̃
l

)
k̃ j i

)
− ξi

⎤

⎦|ei (t)|
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+
n∑

i=1

⎛

⎝
n∑

j=1

|ãi j − ai j |Hi

+ Mi + Qi + M̃i + Q̃i − δi

⎞

⎠ |sgn(ei (t))|

=
n∑

i=1

⎡

⎣
n∑

j=1

(
ãi j+

(
1+ 1

1−μ̃
l

)
k̃ j i

)
−ξi

⎤

⎦ |ei (t)|

−
n∑

i=1

ρiλi , (15)

where λi = |sgn(ei (t))|.
Substituting the conditions (7) and (8) into (15)

yields

V̇ (t) ≤ −
n∑

i=1

ρiλi . (16)

When V (t) �= 0, it can be obtained from (9) that
there exists at least one index i ∈ {1, 2, . . . , n} such
that λi = 1. Therefore, when V (t) �= 0, one has from
(16) that

V̇ (t) ≤ −ρi ≤ −ρ < 0. (17)

Integrating both sides of the inequality (17) from 0
to t , one has

V (t) − V (0) ≤ −ρt. (18)

Now we prove that there exists an instant t1 ∈
(0,+∞) such that V (t1) = 0. Suppose that V (t) > 0
for all t > 0, then we have from (9) that V1(t) > 0 or
V2(t) > 0. Since V2(t) > 0 for all t > 0 implies
V1(t) > 0, we only discuss the case V2(t) > 0.
When V2(t) > 0, there exists i0 ∈ {1, 2, . . . , n} such
that

∫ t
t−τ̃h(t)

|ei0(s)|ds > 0. Then there exists t̃ ∈
(t − τ̃h(t), t) such that |ei0(t̃)| > 0. From the arbitrari-
ness of t > 0 one has that there exists i0 ∈ {1, 2, . . . , n}
such that |ei0(t)| > 0 for all t > 0, which means
the inequality (18). Therefore, limt→+∞ V (t) = −∞.
This contradicts to the fact that V (t) ≥ 0. Hence, there
exist t1 ∈ (0,+∞) such that

lim
t→t1

V (t) = 0 and V (t) ≡ 0, for ∀t ≥ t1. (19)

By (18) and (19), one has

− V (0) ≤ −ρt1. (20)

Considering (9) and (20), one can obtain that

t1 ≤ V (0)

ρ
= 1

ρ

⎛

⎝
n∑

i=1

|ei (0)|

+ 1

1 − μ̃

n∑

i=1

n∑

j=1

l∑

h=1

k̃i j

∫ 0

−τ̃

|e j (s)|ds
⎞

⎠ . (21)

This completes the proof. ��
Remark 3 Note that the analytical method in the
present paper is based on 1-norm and the key step in
the proof of Theorem 1 is to obtain the inequality (17),
which implies that the derivative of the Lyapunov func-
tional is less than a negative constant before the realiza-
tion of synchronization.However, the finite-time stabil-
ity theorems in [21] and [22] are based on the inequal-
ity V̇ (x) ≤ −αV η(x), where α > 0 and 0 < η < 1
are constants, α1(|x |) ≤ V (x) ≤ α2(|x |) with class-K
functions α1(·) and α2(·). The finite-time synchroniza-
tion criteria in [11–18] are obtained by using the finite-
time stability theorems in [21] and [22], and their Lya-
punov functionals are of quadratic form (2-norm). If 2-
norm-based Lyapunov functional are used, the inequal-
ity (17) cannot be derived.

When there is no delay in the driving and response
systems, i.e., τh(t) = 0, h = 1, . . . ,m in the system
(1) and τ̃h(t) = 0, h = 1, . . . , l in the system (2),
the V1(t) = ∑n

i |ei (t)| can be taken as the Lyapunov
function. By using the similar analysis as that in the
proof of Theorem 1, one can easily derive the following
corollary. Its proof is omitted.

Corollary 1 Let τh(t) = 0, h = 1, . . . ,m and τ̃h(t) =
0, h = 1, · · · , l. Suppose that conditions (H3), (H4),
and (H5) are satisfied, and the control gains ξi and δi
in (6) satisfy the following inequalities:

ξi ≥
n∑

j=1

(ãi j + k̃ j i ), i = 1, 2, . . . , n, (22)

δi >

n∑

j=1

|ãi j − ai j |Hi + Mi + Qi + M̃i + Q̃i ,

i = 1, 2, . . . , n. (23)

Then the systems (1) and (2) can be synchronized in
a setting time under the controller (6). Moreover, the
setting time is estimated as t1 ≤ 1

ρ

∑n
i=1 |ei (0)|, where

ρ = min{ρi , i = 1, 2, · · · , n}.
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The following theorem is abstained from the error
system (4).

Theorem 2 Suppose that the conditions (H1), (H2),
(H4), and (H5) hold and the control gains ξi and δi in
(6) satisfy the following inequalities:

ξi ≥
n∑

j=1

[
ai j+

(
1+ 1

1 − μ
m

)
k ji

]
, i = 1, 2, . . . , n,

(24)

δi >

n∑

j=1

|ãi j − ai j |Li + Mi + Qi + M̃i + Q̃i ,

i = 1, 2, . . . , n. (25)

Then system (2) can be synchronized with (1) in a
setting time under the controller (6). Moreover, the
setting time is estimated as t1 ≤ 1

ρ
(
∑n

i=1 |ei (0)| +
1

1−μ

∑n
i=1

∑n
j=1

∑m
h=1 ki j

∫ 0
−τ

|e j (s)|ds), where ρ =
min{ρi , i = 1, 2, . . . , n}, ρi = δi − (

∑n
j=1 |ãi j −

ai j |Li + Mi + Qi + M̃i + Q̃i ).

Proof Define the followingLyapunov–Krasovskii func-
tional candidate:

V (t) = V1(t) + V2(t), (26)

where

V1(t) =
n∑

i=1

|ei (t)|,

V2(t) = 1

1 − μ

n∑

i=1

n∑

j=1

m∑

h=1

ki j

∫ t

t−τh(t)
|e j (s)|ds.

Computing the derivative of V1(t) along trajectories
of error system (4) yields

V̇1(t) =
n∑

i=1

sgn(ei (t))ėi (t)

=
n∑

i=1

sgn(ei (t))

⎡

⎣
n∑

j=1

ai j ei (t)

+ gi (t) +
n∑

j=1

ãi j yi (t) + f̃ yi (t) + J̃i (t, y(t))

−
n∑

j=1

ai j yi (t) − f yi (t) − Ji (t, x(t))

− ξi ei (t) − δi sgn(ei (t))

⎤

⎦

=
n∑

i=1

⎧
⎨

⎩

⎛

⎝
n∑

j=1

ai j − ξi

⎞

⎠ |ei (t)|

+ sgn(ei (t))

⎡

⎣gi (t) +
n∑

j=1

(ãi j − ai j )yi (t)

+ f̃ yi (t) + J̃i (t, y(t)) − f yi (t)

− Ji (t, x(t))

⎤

⎦ − δi |sgn(ei (t))|
⎫
⎬

⎭ . (27)

One has from (H2) that

sgn(ei (t))gi (t) ≤ |gi (t)|

≤
n∑

j=1

ki j

[
|e j (t)| +

m∑

h=1

|e j (t − τh(t))|
]

. (28)

Similar to the inequality (12), one has from (H4)

and (H5) that

sgn(ei (t))

⎡

⎣
n∑

j=1

(ãi j − ai j )yi (t) + f̃ yi (t) + J̃i (t, y(t))

− f yi (t) − Ji (t, x(t))

⎤

⎦

≤
⎡

⎣
n∑

j=1

|(ãi j − ai j )||yi (t)|+| f̃ yi (t)|+| J̃i (t, y(t))|

+ | f yi (t)| + |Ji (t, x(t))|
⎤

⎦ |sgn(ei (t))|

≤
⎡

⎣
n∑

j=1

|ãi j − ai j |Li

+ Mi + Qi + M̃i + Q̃i

⎤

⎦ |sgn(ei (t))|. (29)

Substituting (28) and (29) into (27), one has

V1(t) ≤
n∑

i=1

⎡

⎣
n∑

j=1

(ai j + k ji ) − ξi

⎤

⎦ |ei (t)|

+
n∑

i=1

⎡

⎣
n∑

j=1

|ãi j − ai j |Li + Mi
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+ Qi + M̃i + Q̃i − δi

⎤

⎦ |sgn(ei (t))|

+
n∑

i=1

n∑

j=1

m∑

h=1

ki j |e j (t − τh(t))|. (30)

It is followed by V2(t) and (H1) that

V̇2(t) = 1

1 − μ

n∑

i=1

n∑

j=1

ki j

⎡

⎣m|e j (t)|

−
m∑

h=1

(1 − τ̇h(t))|e j (t − τh(t))|
⎤

⎦

=
n∑

i=1

n∑

j=1

ki j

⎡

⎣ 1

1 − μ
m|e j (t)|

−
m∑

h=1

1 − τ̇h(t)

1 − μ
|e j (t − τh(t))|

⎤

⎦

≤ 1

1 − μ
m

n∑

i=1

n∑

j=1

ki j |e j (t)|

−
n∑

i=1

n∑

j=1

m∑

h=1

ki j |e j (t − τh(t))|. (31)

Considering (30) and (31), one derives that

V̇ (t) = V̇1(t) + V̇2(t)

≤
n∑

i=1

⎡

⎣
n∑

j=1

(
ai j +

(
1 + 1

1 − μ
m

)
k ji

)
− ξi

⎤

⎦

× |ei (t)| +
n∑

i=1

⎛

⎝
n∑

j=1

|ãi j − ai j |Li

+ Mi + Qi + M̃i + Q̃i − δi

)
|sgn(ei (t))|

=
n∑

i=1

⎡

⎣
n∑

j=1

(
ai j +

(
1 + 1

1 − μ
m

)
k ji

)
− ξi

⎤

⎦

× |ei (t)| −
n∑

i=1

ρiλi , (32)

where λi = |sgn(ei (t))|.
Substituting the conditions (24) and (25) into (32)

produces the following inequality:

V̇ (t) ≤ −ρ. (33)

The rest part is the same as that in the proof of The-
orem 1. This completes the proof. ��

The following corollary can be derived from Theo-
rem 2.

Corollary 2 Let τh(t) = 0, h = 1, . . . ,m and τ̃h(t) =
0, h = 1, . . . , l. Suppose that conditions (H2), (H4),
and (H5) are satisfied and the control gains ξi and δi
in (6) satisfy the following inequalities:

ξi ≥
n∑

j=1

(ai j + k ji ), i = 1, 2, . . . , n, (34)

δi >

n∑

j=1

|ãi j − ai j |Li + Mi + Qi + M̃i + Q̃i ,

i = 1, 2, . . . , n. (35)

Then the systems (1) and (2) can be synchronized in
a setting time under the controller (6). Moreover, the
setting time is estimated as t1 ≤ 1

ρ

∑n
i=1 |ei (0)|, where

ρ = min{ρi , i = 1, 2, · · · , n}.
Remark 4 Based on the error systems (3) and (4), The-
orems 1 and 2 are obtained respectively. All the syn-
chronization criteria in Theorems 1 and 2, and Corol-
laries 1, 2 are applicable to finite-time synchronization
control of nonidentical systems. In real applications,
operators should select less conservative synchroniza-
tion criteria from Theorems 1 and 2, and Corollaries 1,
2 according to the practical situation.

When the drive-response systems (1) and (2) are
identical and do not have external perturbations, i.e.,
A = Ã, f x (t) = f̃ x (t) , J (t, x(t)) = J̃ (t, y(t)) = 0,
the error systems (3) and (4) turn out to be

ė(t) = Ae(t)+g(e(t), e(t − τ1(t)), . . . , e(t − τm(t)))

+U (t). (36)

From Theorem 2, one can obtain the following corol-
lary.

Corollary 3 Suppose that A = Ã, f x (t) = f̃ x (t),
J (t, x(t)) = J̃ (t, y(t)) = 0, and (H1), (H2) hold. If
the control gains ξi and δi in (6) satisfy

ξi ≥
n∑

j=1

[
ai j+

(
1+ 1

1−μ
m

)
k ji

]
, i = 1, 2, . . . , n,

(37)

δi > 0, i = 1, 2, . . . , n. (38)

Then system (2) can be synchronized with (1) in a
setting time under the controller (6). Moreover, the
setting time is estimated as t1 ≤ 1

δ
(
∑n

i=1 |ei (0)| +

123



www.manaraa.com

Finite-time synchronization of nonidentical chaotic systems 83

1
1−μ

∑n
i=1

∑n
j=1

∑m
h=1 ki j

∫ 0
−τ

|e j (s)|ds), where δ =
min{δi , i = 1, 2, . . . , n}.
Proof By taking Li = 0, Mi = 0, Qi = 0, M̃i = 0,
and Q̃i = 0, the proof is the same as that in the proof
of Theorem 2. This completes the proof. ��
Remark 5 As far as the authors’ knowledge, few pub-
lished papers study finite-time synchronization of non-
identical systems except [10]. However, the results in
[10] cannot be extended to time delay since they are
obtained under the framework finite-time stability the-
orem in [22]. Moreover, [10] did not consider external
disturbances. Recently, Yang studied finite-time syn-
chronization of a class of neural networks with delays
in [25], but the driving and response systems in [25]
were identical and did not consider external perturba-
tions. In this paper, the driving and response systems
are nonidentical with different time delays and subject
to bounded uncertain nonidentical external perturba-
tions. Hence the model considered in the present paper
is very general and improve the corresponding results
in [10] and [25] to some extent.

4 Numerical examples

In this section, three numerical examples are given to
illustrate the effectiveness of the theoretical results.
Specifically, Examples 1, 2, and 3 are given to verify
Theorems1, 2, andCorollary 2, respectively.Moreover,
the setting times for each example are also given.

Example 1 Consider two nonidentical neural networks
with different multiple time-varying delays and uncer-
tain nonlinear external perturbations in drive-response
configuration. The driving system is represented as fol-
lows:

ẋ(t) = Ax(t) + f x (t) + J (t, x(t)), (39)

where x(t) = (x1(t), x2(t))T , f x (t) = f (x(t), x(t −
τ1(t)), x(t−τ2(t))) = (tanh(x1(t))−0.3 tanh(x2(t))+
1.4 tanh(x1(t − τ1(t))) + 0.1 tanh(x2(t − τ2(t))),
−8 tanh(x1(t))+5 tanh(x2(t))+0.3 tanh(x1(t−τ1(t)))
− 8 tanh(x2(t − τ2(t)))T , τ1(t) = 0.1| sin(t)|, τ2(t) =
0.8| sin(t)|, and

A =
(−3 2

1 −1

)
, J (t, x(t)) =

(
0.1 cos(t)

0.6 + 0.3 sin(t)

)
.

−4 −3 −2 −1 0 1 2 3 4
−6
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−2

0

2
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8

x1(t)

x
2
(t
)

Fig. 1 Trajectories of x(t) of (39) with initial conditions x(0) =
(1, 3)T

The response system is described by

ẏ(t) = Ãy(t) + f̃ y(t) + J̃ (t, y(t)) +U (t), (40)

where y(t) = (y1(t), y2(t))T , f̃ y(t) = f̃ (y(t), y(t −
τ̃1(t))) = (2.3 tanh(y1(t))+ 0.3 tanh(y2(t))− tanh(y1
(t − τ̃1(t))), 4 tanh(y1(t)) + 4 tanh(y2(t)) + 0.6
tanh(y1(t − τ̃1(t))))T , τ̃1(t) = 0.4 ∗ | sin(t)|, and

Ã =
(
0.2 −1
2 −3

)
, J̃ (t, y(t)) =

(
0.3 sin(t)
0.2 cos(t)

)
.

Figure 1 presents the chaotic trajectory of (39) with
the initial value x(0) = (1, 3)T , and the states are
bound with |x1| ≤ 3.6169 = H1, |x2| ≤ 6.0533 = H2.
Figure 2 presents the chaotic trajectory of (40) with
U (t) = 0 and the initial value y(0) = (2, 1)T .

It is easy to get that τ = 0.8 and μ = 0.8, τ̃ = 0.4
and μ = 0.4, then the condition (H1) holds. One
obtains that | f̃ y1 (t)− f̃ x1 (t)| ≤ 2.3|e1(t)|+0.3|e2(t)|+
|e1(t − τ̃1)| and | f̃ y2 (t) − f̃ x2 (t)| ≤ 2.3|e1(t)| +
0.3|e2(t)| + |e1(t − τ̃1)|, thus the condition (H3) is
satisfied with k̃11 = 2.3, k̃12 = 0.3, k̃21 = 4, k̃22 = 4.
Moreover, f x1 (t) ≤ | tanh(x1(t))|+0.3| tanh(x2(t))|+
1.4| tanh(x1(t − τ1(t)))| + 0.1| tanh(x2(t − τ2(t)))| ≤
1 + 0.3 + 1.4 + 0.1 = 2.8 = M1, f x2 (t) ≤
8| tanh(x1(t))| + 5| tanh(x2(t))| + 0.3| tanh(x1(t −
τ1(t)))| + 8| tanh(x2(t − τ2(t))| ≤ 8 + 5 + 0.3 +
8 = 21.3 = M2, f̃ x1 (t) ≤ 2.3| tanh(x1(t))| +
0.3| tanh(x2(t))| + | tanh(x1(t − τ̃1(t)))| ≤ 2.3 +
0.3 + 1 = 3.6 = M̃1, f̃ x2 (t) ≤ 4| tanh(x1(t))| +
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Fig. 2 Trajectories of x(t) of (40) with initial conditions y(0) =
(2, 1)T

4| tanh(x2(t))| + 0.6| tanh(x1(t − τ̃1(t)))| ≤ 4 + 4 +
0.6 = 8.6 = M̃2, and J1(t, x(t)) ≤ 0.1 = Q1,
J2(t, x(t)) ≤ 0.9 = Q2, J̃1(t, y(t)) ≤ 0.3 = Q̃1,
J̃2(t, y(t)) ≤ 0.2 = Q̃2. Hence, the conditions (H4)

and (H5) are satisfied.

Take ξ1 = ∑n
j=1

[
ã1 j + (1 + 1

1−μ̃
l)k̃ j1

]
= 16,

ξ2 = ∑n
j=1

[
ã2 j + (1 + 1

1−μ̃
l)k̃ j2

]
= 10.4667, and

δ1 >
∑n

j=1 |ã1 j − a1 j |H1 + M1 + Q1 + M̃1 + Q̃1 =
29.2415, δ2 >

∑n
j=1 |ã2 j − a2 j |H2 + M2 + Q2 +

M̃2 + Q̃2 = 49.1599, then the neural networks (39)
and (40) can realize finite-time synchronization under
the controller (6) according to Theorem 1. Nowwe take
δ1 = 39.2415, δ1 = 59.1599. By simple computation,
one has ρ1 = ρ2 = 10. Moreover, the setting time is
t1 = 2.42.

In the simulations, the Euler scheme is used and the
step-length is set as 0.0001. The initial values of the
systems (39) and (40) as those in Figs. 1 and 2, respec-
tively, we obtain the time evolution of ‖e(t)‖1 showing
in Fig. 3, from which one can see that the synchro-
nization is achieved before the setting time t1 = 2.42.
Therefore, the effectiveness of Theorem 1 is verified.

Example 2 Consider the time-delay Rössler system
with external perturbations as the driving system and
the time-delay Lorenz system with external perturba-
tions as the response system. The time-delay Rössler
system with external perturbations is described as:

ẋ(t) = Ax(t) + f x (t) + J (t, x(t)), (41)
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‖e(
t) ‖1

ξ
1
=16,ξ

2
=10.4667;δ

1
=39.2415,δ

2
=59.1599

Fig. 3 Time evolution ‖e(t)‖1 with ξ1 = 16, ξ2 = 10.4667, and
δ1 = 39.2415, δ2 = 59.1599

where x(t) = (x1(t), x2(t), x3(t))T , f x (t) = f (x(t),
x(t − τ1(t)), x(t − τ2(t))) = (0, 0, 0.2 + x1(t −
τ1(t))x3(t − τ2(t)))T , τ1(t) = 0.05, τ2(t) = 0.1, and

A =
⎛

⎝
0 −1 −1
1 0.38 0
0 0 −5.7

⎞

⎠ , J (t, x(t)) =
⎛

⎝
0.1
0.3
0.5

⎞

⎠ .

The time-delay Lorenz system with external pertur-
bations is described as:

˙̃x(t) = Ãy(t) + f̃ y(t) + J̃ (t, y(t)) +U (t), (42)

where y(t) = (y1(t), y2(t), y3(t))T , f̃ y(t) = f̃ (y(t),
y(t − τ̃1(t)), y(t − τ̃2(t))) = (0, y1(t)y3(t − τ̃1(t)),
y1(t)y2(t − τ̃2(t)))T , τ̃1(t) = 0.1, τ̃2(t) = 0.04, and

Ã =
⎛

⎝
−10 10 0
28 −1 0
0 0 8/3

⎞

⎠ , J̃ =
⎛

⎝
0.8
1
1.3

⎞

⎠ .

Choosing the initial value as x(t) = (1, 1, 1)T , ∀t ∈
[−0.1, 0], the chaotic trajectory of (41) is shown in
Fig. 4. When take u(t) = 0 and the initial value is
chosen as y(t) = (3, 2, 4)T ,∀t ∈ [−0.1, 0], the chaotic
trajectory of (42) is presented in Fig. 5.

As the same solution procedure of Example 1, we
get that τ = 0.1, μ = 0, τ̃ = 0.1, μ̃ = 0, L =
(27.1251, 47.7637, 108.
0509)T , Mi=(0, 0, 529.6247)T , Q = (0.1, 0.3, 0.5)T ,
M̃i = (0, 223.4931, 189.6356)T , Q̃ = (0.8, 1, 1.3)T ,
and
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Fig. 4 Trajectories of x(t) of (41) with initial conditions x(t) =
(1, 1, 1)T , t = −0.1
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Fig. 5 Trajectories of x(t) of (42) with initial conditions x(t) =
(3, 2, 4)T , t = −0.1

K =
⎛

⎝
0 0 0
0 0 0

64.9978 0 13.3675

⎞

⎠ .

Take ξ1 = ∑n
j=1

[
a1 j + (1 + 1

1−μ
m)k j1

]
= 192.9934,

ξ2 = ∑n
j=1

[
a2 j + (1 + 1

1−μ
m)k j2

]
= 1.3800, and

ξ3 = ∑n
j=1

[
a3 j + (1 + 1

1−μ
m)k j3

]
= 34.4025.

Choosing δ1 = 607.65 >
∑n

j=1 |ã1 j − a1 j |L1 +
M1 + Q1 + M̃1 + Q̃1 = 597.65, δ2 = 668.03 >∑n

j=1 |ã2 j −a2 j |L2+M2+Q2+ M̃2+ Q̃2 = 658.03,
and δ3 = 1635.10 >

∑n
j=1 |ã3 j −a3 j |L3+M3+Q3+

M̃3 + Q̃3 = 1625.10, it gets that ρ1 = 10, ρ2 = 10,
and ρ3 = 10. Therefore, all the conditions of Theo-
rem 2 hold, then the system (42) can be synchronized
with (41) in finite time.
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Fig. 6 Time evolution ‖e(t)‖1 with ξ1 = 192.9934, ξ2 =
1.3800, ξ3 = 34.4025, and δ1 = 607.65, δ2 = 668.03, δ3 =
1635.10
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Fig. 7 Time evolution ‖e(t)‖1 with ξ1 = 59.4555, ξ2 =
1.3800, ξ3 = 20.1105, and δ1 = 341.53, δ2 = 463.46, δ3 =
906.71

Taking the initial value of the systems (41) and (42)
the same as that in Figs. 4 and 5, respectively, Fig. 6
describes the trajectories of the error states, which indi-
cates that the synchronization is realized before the set-
ting time t1 = 0.9578 estimated by Theorem 2. Hence,
Theorem 2 is verified.

Example 3 Consider system (41) without delay as the
driving system and system (42) without delay as the
response system. The initial value of the drive system
is set as x(0) = (0.1, 0.1, 0.1)T and the initial value of
the response system is set as y(0) = (3, 2, 4)T .

It is easy to verify that all the conditions of Corol-
lary 2 are satisfied if we take ξ1 = ∑n

j=1(a1 j + k j1) =
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59.4555, ξ2 = ∑n
j=1(a2 j + k j2) = 1.3800, ξ3 =∑n

j=1(ai j + k ji ) = 20.1105, and δ1 = 341.53 >
∑n

j=1 |ã1 j −a1 j |L1+M1+Q1+ M̃1+ Q̃1 = 331.53,

δ2 = 463.46 >
∑n

j=1 |ã2 j−a2 j |L2+M2+Q2+M̃2+
Q̃2 = 453.46, δ3 = 906.71 >

∑n
j=1 |ã3 j − a3 j |L3 +

M3 + Q3 + M̃3 + Q̃3 = 896.71. According to Corol-
lary 2, we obtain that the setting time t1 = 0.87. Fig. 7
shows the trajectories of the error states. In Fig. 7, the
actual synchronization time is 0.069, which is shorter
than the setting time.

5 Conclusions

In this paper, finite-time synchronization for a class of
nonidentical drive-response chaotic systems with mul-
tiple time-varying delays and bounded external pertur-
bations has been studied. By designing suitable con-
trollers and Lyapunov functionals, several sufficient
conditions have been obtained to guarantee that the
coupled systems can be finite-timely synchronized.
The setting time is also given. Models considered in
this paper are general and the results extend existing
ones to some extent. Three numerical examples have
been given to verify the effectiveness of the theoretical
results.
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